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University, Canberra, A C T  2600, Australia 
$Department of Applied Mathematics, University of New South Wales, PO Box 1, 
Kensington, NSW 2033, Australia 
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Abstract. Two efficient methods for finding the low-lying states of Hamiltonians on finite 
lattices are described. The first involves constructing a finite representation of the Hamil- 
tonian using strong-coupling eigenstates, while the second is based on the Lanczos recursion 
method. The methods are used to determine the mass gap of the O(2) and O(3) Heisenberg 
Hamiltonians in (1 + 1) dimensions for a sequence of finite chains. The critical behaviour of 
the infinite chain is then analysed by extrapolating the finite-lattice estimates using 
finite-size scaling. A remarkably sensitive test is developed for the presence of a phase 
transition. For the O(2) model data this test yields strong evidence for a phase transition 
with the weak-coupling phase massless, while in the O(3) case the test supports, although 
more weakly, the absence of any transition. 

1. Introduction 

In the preceding paper (Hamer and Barber 1981), hereafter referred to as I, we 
discussed the behaviour of the Hamiltonian version of the two-dimensional Ising model 
using finite-size scaling. Our primary interest was not in this model in itself, but in the 
feasibility of extracting the behaviour of the theory from the way in which physical 
quantities varied with the size of the lattice. The results reported in I indicated that this 
approach was quantitatively as accurate as series methods (see e.g. Hamer and Kogut 
1979). In this paper we extend our techniques to investigate the Hamiltonian versions 
of O ( N )  Heisenberg models ( N  = 2,3)  in (1 + 1) dimensions. A preliminary 
announcement of some of these results has already been given (Hamer and Barber 
1980). 

The Hamiltonian field theory versions of these models have been discussed by 
Hamer et a1 (1979). The lattice Hamiltonian takes the form 

where the sum runs over the M sites of a chain with periodic boundary conditions. In 
addition, g is a dimensionless coupling, a is the lattice spacing, x = 2/g2, J ( m )  is the 
angular momentum operator appropriate to the O ( N )  rotational symmetry, and n (m) is 
an N- component spin vector normalised to unity. 
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These Hamiltonians differ from the Ising Hamiltonian treated in I in two features. 
Firstly, it does not appear possible to diagonalise them analytically, even for finite M. 
Secondly, and rather more significantly, the state space of the Hamiltonian is infinite 
even on a finite chain. Thus in a numerical approach we cannot hope to calculate 
eigenvalues exactly, but must resort to a numerical procedure which hopefully yields 
sufficiently accurate numbers for a reasonable degree of computation. 

In § 2 we describe two methods which appear to satisfy this criterion. In essence, the 
first method uses strong-coupling eigenstates to construct a finite-matrix representation 
of H. This matrix can then be diagonalised by standard procedures. The second is a 
recursive method based on the Lanczos method of tri-diagonalisation. The remainder 
of the paper is arranged as follows. Section 3 describes the analysis of the O(2) mass gap 
results for the existence of a scale-invariant region. To do this we make use of a 
refinement of phenomenological renormalisation (Nightingale 1977, Sneddon and 
Stinchcombe 1979, described in Hamer and Barber 1980). The nature of the 
singularity at the terminus of this scale-invariant region (the analogue of the Kosterlitz- 
Thouless point) is also discussed. Section 4 is devoted to the O(3)  model, which supplies 
a further test of our method for two reasons. It is a non-Abelian model and is expected 
not to exhibit a phase transition. Section 5 contains some calculations and comments 
pertaining to the weak-coupling regime of the O(2) Hamiltonian on a finite chain. 
Section 6 closes the paper with an overall summary and discussion. 

2. Method 

For simplicity we describe our methods of diagonalising finite-lattice Hamiltonians by 
reference to the Ising Hamiltonian 

where a i ( m )  are Pauli spin matrices and the notation is otherwise as before. Let us write 
this Hamiltonian as 

where 

and 
M 

V =  a l ( m ) a l ( m + l ) .  
m = l  

2.1. Strong-coupling eigenstate method 

The essential idea (Hamer 1979) of this first method is to generate a set of strong- 
coupling eigenstates of WO by successive applications of the operator V to an 
unperturbed eigenstate of WO. The assumption of periodic boundary conditions means 
that we may restrict ourselves to periodic states. 
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Let us outline explicitly the calculation of the ground state of W for a lattice of size 
M = 5 .  The ground state of Ho is the state 10) such that 

We represent this state by an empty chain: 

Application of V gives a state 

where a bar ' 1 '  denotes a flipped spin. We shall denote 11) simply by I 1 1 ), where the 
translational invariance is implicit. Application of V to I 1 1 ) now gives a combination of 
two eigenstates of Ho: 

(2.8) 

where the periodic extension of each state is understood. Thus we now have a 
four-dimensional basis consisting of IO), 11) and two new states: 

VI I I )=2(1 I .  I ) + I  I 1  I I ))+JJtO), 

12) = I I . I ), 13)= I I I I I ). (2.9) 

Reapplication of V to these states generates no new states. This is of course a special 
feature of the Ising system and reflects the fact that this Hamiltonian has a finite state 
space. For the O ( N )  model this procedure does not terminate, but as we shall see 
converges rather rapidly. 

Using the basis {In), n = 0, 1, 2, 3) we now form the matrix (nlHlm), which is given 
explicitly by 

0 - x J S  0 

(2.10) 
-xJJ 4 - 2 ~  -",, ] 

0 - 2 ~  4 - 2 ~  -X ' 

0 - 2 ~  -X 8 - 2 ~  

The lowest eigenvalue of this matrix is 

W O  = 4 -X -2[1+ X 2  -k 2X COS(2?r/5)]'/2 - 2[1 + X 2  4- 2X C O S ( ~ ~ T / ~ ) ] ' / ~ ,  

which agrees with that obtained in I analytically. 

from the first excited state of Ho, which consists of a single flipped spin. 
To obtain the energy of the first excited state of H we repeat the process, but start 

This method can be easily extended (Hamer et a1 1979) to the O ( N )  models with 

and 

V =  1 n ( m )  . n ( m  + I ) .  
m 

(2.1 1) 

(2.12) 

The only important new feature is that the operator J 2 ( m )  now has an infinite spectrum 
of eigenvalues, whereas in the Ising model there were only two. Therefore the complete 
set of eigenstates on the finite lattice is no longer finite, and it is no longer possible to 
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compute the exact eigenvalues of H by exhausting the state space by successive 
applications of V. 

Nevertheless, sufficiently precise results may be obtained by perturbing to high 
enough orders. This is illustrated in figure 1, which shows approximations to the mass 
gap F (x) for the O(2) model on a 3-site lattice, obtained at various orders N. It can be 
seen that the successive estimates converge very rapidly at any fixed value of x and ‘map 
out’ the function F (x, M )  over successively larger regions. Except in the very-large-x 
regime, one may get sufficiently accurate estimates of F (x, M )  by perturbing to order 
N - O ( M ) .  In this manner we have been able to evaluate the ground state and first 
excited states of (1.1) for M S  6. It should be noted that technically this calculation is 
similar to the strong-coupling expansions, but carried to higher order. In the strong- 
coupling expansions (Hamer et a1 1979) the perturbation coefficients were obtained by 
taking a finite lattice of M sites ( M  odd) and perturbing to order ( M -  1)/2.  To this 
order the finite-lattice estimate and the exact infinite-lattice energies agree when 
expanded in powers of x. 

Figure 1. Mass gap of the O(2) Hamiltonian on a 3-site lattice. The broken curves are 
finite-order approximations, labelled (N, M ) ,  where M = 3 is the number of sites and N is 
the order in perturbation. The full curve is the limiting ‘exact’ result obtained for N 2 3. 

2.2. Recursive method 

An alternative method we have investigated to some extent is based on recursive 
methods similar to those used in band theory (see e.g. Haydock et a1 1975) and nuclear 
physics (see e.g. Whitehead et a1 1977). This method is also known as the Lanczos 
method in numerical analysis (Wilkinson 1964) and has been independently suggested 
as a way of finding the eigenvalues of a lattice Hamiltonian by Roomany et a1 (1980), 
who applied it to Z ( 2 )  and Z(3) Ising spin systems. Since this method has been 
described in some detail by Roomany et al, we content ourselves with a brief description 
and some comparisons of the two procedures. 

The essential idea is to form a basis in) in which H is tri-diagonal; Thus 

H ( n ) =  b,ln - l )+a , ln )+b ,+~ ln  +1) ,  (2.13) 
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and the states In) together with the coefficients {b,, a,} can be calculated recursively 
from bo=O and an initial state 10) which we again choose to be the unperturbed 
eigenstate. 

Considering the ground state of the 5-site Ising chain again, we take IO) = I . )  and 
hence 

so that a. = 0, bl = -xJ?  with 

I P ) = I I I ) .  (2.15) 

Repeating the operation gives 

where 
1 

1 2 ) = z ( I  I I I / ) + I  1 . 1 ) ) .  

13) =J2 (I I I I I ) - I  I - I )I, 

Yet another application of (2.13) forms the state 

1 

(2.17) 

(2.18) 

after which the recursion terminates leaving the tri-diagonal matrix representation 

1 o -xJJ o O\ 
- x J J  4 -2xJZ o 

o -2xJT 6-3x 2 
(2.19) 

0 

Since this matrix is tri-diagonal, the extraction of the lowest eigenvalue is easily 
achieved. 

The termination of this recursion method is again due to the fact that the Ising 
Hamiltonian has a finite state space. For the O(2) model no such termination occurs, 
but successive estimates of the eigenvalues of H formed by truncating this recursion by 
putting bN+l = 0 converge rather rapidly to the limiting value. This is illustrated in table 
1, where we list successive estimates of the ground state energy of the 5-site chain for 

Table 1. Successive estimates of the ground state energy and its derivative following from 
the recursion method for the 5-site O(2) Hamiltonian at coupling x = 1. 

0 
-0.870 83 
-1.128 26 
-1.240 72 
-1.273 91 
-1.285 32 
-1,288 16 
-1.288 91 
-1.289 14 

0 
-2.672 61 
-4.047 61 
-4.801 46 
-4.993 30 
-5 .035 95 
-5.040 92 
-5.040 00 
-5,038 65 
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coupling x = 1. Evidently successive estimates are upper bounds to the exact level. This 
is indeed the case and can be established analytically (Wilkinson 1964). The procedure 
can be repeated for the first excited state by starting the recursion from the state 10) = I 1).  
The method may also be adapted to yield successive estimates of the derivative. 
Illustrative data for this are also presented in table 1. 

The advantage of the recursion method is that it eliminates the necessity of explicitly 
diagonalising a large matrix. Thus the recursion method in principle can go further than 
the strong-coupling procedure. Nevertheless, it is still limited by the necessity of storing 
the states In) in some appropriate basis, which is most easily taken to be the strong- 
coupling eigenstates of WO. Thus the storage requirements of the two methods are 
comparable. Moreover, in practice one has to run the recursion method to higher 
order, thereby generating more states, to obtain results of sufficient accuracy. Indeed, 
we were unable to go beyond the limit of M = 6 achieved by the strong-coupling 
procedure without the necessity of an extensive use of external storage devices. If the 
storage problem can be overcome, the recursion method, because of its avoidance of 
any explicit diagonalisation, will probably be a significant step to tackling more complex 
Hamiltonians on higher-dimensional lattices. Unfortunately, this is a problem for 
which we do not see an early solution. 

3. Mass gap of O(2) Hamiltonian 

Figure 2 shows the estimates of the O(2) model mass gap F (x, M )  as a function of lattice 
size M. They decrease rapidly as x increases, but never actually vanish, which, of 
course, reflects the absence of a phase transition for finite M. 

The key questions now are whether we can infer from these finite-lattice results: 
(i) the existence of a phase transition in the limiting (M+co) system; (ii) that the 
low-temperature (large-x) phase is massless, i.e. the mass gap is zero; and (iii) at the 

'ti -1 

I I 
0 1 2 

X 

Figure 2. Mass gaps F,,,(x) for the O(2) Hamiltonian as a function of lattice size M. 
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onset of the massless phase, the mass gap vanishes exponentially as 

F (x, M = 00) - exp [-a/(x -x,)"] (3.1) 

where from Kosterlitz's (1974) analysis of the Euclidean action we expect I+ = i. 
To answer these questions we make use of finite-size scaling (Fisher and Barber 

1972), which was described in some detail and extended to Hamiltonian field theory in 
I. The essential result for our present purpose is the ansatz that 

F (x ; M )  -M-'Q(x/[) 

F (x, M )  -AI-'. (3.3) 

(3.2) 

where [ = 1/F (x;  00) is the correlation length of the bulk system. Thus, if [ is infinite, 

Elsewhere (Hamer and Barber 1980) we have argued that scale-invariant points in the 
infinite system can thus be identified by plotting 

RM(x)'MF (x; M)/(M-l)F (xi M - 1) (3.4) 

against x and finding those points for which 

RM(X) = 1. (3.5) 

For the Ising model (see I) the method yielded an estimate of xc = 1 to less than 0.05% 
from data for M s 10. The method is equivalent to the prescription of 'phenomenolo- 
gical renormalisation' (Nightingale 1976, Sneddon and Stinchcombe 1979). 

The ratios RM(x) for the O(2) model are plotted in figure 3. Their behaviour is 
remarkable. The ratios drop to within a fraction of one per cent of the value of 1 at 
x = 2, and then stay there, being apparently asymptotic to the curve x = l!  This 
behaviour is established immediately, even for M as low as 3. We regard this as a 
spectacular demonstration that the O(2)  model has a region of scale invariance in which 
it is massless. For comparison we note that, in a similar plot for the Ising Hamiltonian 
(see Hamer and Barber 1980), the ratios RM(x) for all M drop linearly through xc = 1, 
thereby providing a clear indication of the presence of a single scale-invariant critical 
point. In the O(2) case it is hard to decide the precise position of the critical point with 
any accuracy when the ratios RM(x) are tangent to the line x = 1 at x = xc, rather than 
crossing it. However, we estimate it to be at xc = 1.8 f 0.2, which is in good agreement 
with the series analysis results of Hamer et a1 (1979). 

To analyse the behaviour of the mass gap at the terminus of the massless region, it is 
convenient to investigate the p function defined (see Hamer et a1 1979) by 

P ( g ) / g  =F(x)l[F(x)-2xF'(x) l .  (3.6) 

If F (x) varies as in (3.1), then 

P ( g ) / g  - (x -xc)l+o, x -+ xc, (3.7) 

i.e. the @-function vanishes algebraically, rather than with a simple zero as for a 
conventional transition. 

Since the mass gap at criticality scales as 

F (xc, M )  - 1 IM, M - + q  (3.8) 



266 C J Hamer and M N Barber 

1 5  

1 1  

1 ’  

1 c  

c 
I I I I I 1 I I 

0 8  1 6  2 L  3 2  

X 

Figure 3. Scaled mass gap ratios R M ( x ) = M F M ( x ) / ( M -  l ) F ~ - ~ ( x )  against x for the O(2) 
model. 

it is easy to show that the p function should vanish as 

9 M+oo -(1+,7)/,7 
P(g)/gI .=. . - ( InM) (3.9) 

as the lattice size increases?. 
The finite-lattice results for the O(2) model p function are shown in figure 4. 

Unfortunately, values at x,=1.8 do not obey the scaling relation (3.9) at all well. 
However, the minimum values for each M scale somewhat better$. These minimum 
values are listed in table 2. From successive pairs of points in table 2, one can deduce a 
slope for the plot of In ( p / g )  against ln(ln M )  and hence an estimate of (1 + a)/a.  These 
slopes are also listed in table 2, along with linear and quadratic extrapolants of the slope 
against 1/M. Our final estimate derived from these values is 

( l + a ) / a = 2 . 1 * 0 * 5 ,  i.e. (+ = 0-9  f 0.4. (3.10) 

There is a strong upward drift in the estimates of (1 + a) /a  as M increases, with a 
corresponding downward drift in the estimates for a, so that the value of a = predicted 
by Kosterlitz (1974) is by no means unlikely. This behaviour also accords well with the 

t For a conventional continuous transition at which the mass gap vanishes algebraically, the analogous 
prediction (see I) is ~ ( g ) / g ~ x = x c - M - l ’ ” .  
$ This is not unusual in finite-size scaling analyses where the exact critical coupling is not known, e.g. specific 
heat maxima are often used to estimate specific heat exponents from Monte Carlo data (see Domany et al 
1975). 
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t i 

0 1 2 
X 

Figure 4. Values of the p function p(g) /g  of the O(2) model plotted as a function of 
x = 2/gz  for various lattice sizes M. Note the definite minima. 

Table 2. Minimum values of p ( g ) / g  for each lattice size M. From each successive pair of 
values, a slope can be deduced for the curve lr~[P(g)/g],,,~, against In (In M ) .  The estimates 
1%) and 1E are extrapolations of the slopes to 1 / M  = 0 assuming (1) linear and (2) quadratic 
behaviour in the variable 1/M. 

~~~ ~ ~~ 

( 2 )  M [P(g)/gl,,, Slope 15) ( M  

2 0.642 
3 0.483 -0.62 
4 0,394 -0.88 - 1.65 
5 0.337 -1.06 -1.78 -1.98 
6 0.296 -1.20 -1.89 -2.09 

more complicated form 

F (XI - exp[-b/(r + c J t ) ] ,  t = x -Xc’ 0, (3.11) 

which was suggested recently by Doniach and Huberman (1979). 
The result (3.10) is certainly not spectacular, even if compared with the estimate 

from the series analysis of the strong-coupling expansions of 0.6 f 0.3 (Hamer and 
Kogut 1979). In addition, the finite-lattice results for the p function minima can be 
extrapolated with a similar, if not better, accuracy by assuming a variation of the form 

consistent with a conventional singularity. Thus our results are consistent with 
the expected behaviour, but data from longer chains or a more refined method of 
analysis are necessary to yield quantitative agreement. 

Finally, results for the specific heat (or more precisely the second derivative w6 (x) of 
the ground state energy) on finite lattices are presented in figure 5 .  The curves seem to 
be converging rapidly towards an asymptotic form (M + 00) with a level plateau out to 
x = 0.9, followed by a smooth descent towards zero; there is no sign of any divergence at 

M-‘/” 
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Figure 5. Plots of the second derivative of the ground state energy U:  ( x )  of the O(2) model 
against x for various lattice sizes M. 

the critical point. This agrees with the series analysis (Hamer and Kogut 1979) and the 
renormalisation group arguments of Kosterlitz (1974). 

4. The O(3) model 

The mass gap F ( x ,  M )  for the non-Abelian O(3) model is shown in figure 6. This model 
has more degrees of freedom than the O(2) model, of course; thus we have only been 
able to ‘map’ the function F (x, M )  reliably €or 2- and 3-site lattices. The general 

Figure 6. Mass gap values F M ( x )  for the O(3) model as a function of lattice size M. 
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pattern of behaviour appears very similar to that of the O(2) model. One might suspect 
the existence of a phase transition in the neighbourhood x = 10. 

The resulting values for the scaled mass gap ratio R M ( x )  are plotted in figure 7. The 
ratio for M = 3 drops rapidly, and then levels out, just as it did in the O(2) case. But it 
always remains safely above the critical value 1, by some 3 or 4%. We regard this as 
indicating the absence of a phase transition at finite x in the O(3) model. 

Figure 7. Plot of the scaled mass gap ratio R,(xj for the O(3j model 

This demonstration is not really conclusive, of course-we are stretching the 
finite-size scaling hypothesis to its very limits, and relying on it in a literal way for lattices 
down to the smallest size. We have no right in principle to do this. But the scaling 
hypothesis for the mass gaps has worked in such a sensitive and precise manner in the 
previous cases, that we are emboldened to rely on it here also. 

By way of comparison, we recall that the strong-coupling series analysis for this 
model (Hamer and Kogut 1979) gave ambiguous results. The mass gap series in x did 
not seem to indicate a phase transition; but upon transforming to the variable 
z = x / ( l  + x ) ,  the standard tests did indicate a phase transition at x = 9* l ( z  = 0.9). It 
was only by matching the strong-coupling expansion with the weak-coupling results of 
BrCzin and Zinn-Justin (1976) that one was able to reach a conclusion: namely that a 
phase transition was disfavoured (Hamer et a1 1979, Hamer and Kogut 1979). This is in 
accord with theoretical prejudices, and with our finite-size scaling conclusion above. 

We do not show curves for the specific heat (or rather wb'(x)) in the O(3) model. The 
pattern is very similar to that of the O(2) model. There is a level plateau out to x = 2, 
followed by a rapid, monotonic decline towards zero. 

5. Analytic results for weak coupling 

Our numerical results may be confirmed and illuminated by an algebraic analysis in the 
weak-coupling (low-temperature) limit, x + 03. We shall first consider the case of the 
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2-site lattice in some detail, and then indicate how these results may be extended to 
larger lattices. 

Consider the dimensionless O(2) Hamiltonian 
M 

(5.1) 
2a W = - H =  1 [J2(m)-x C O S ( O , , - O ~ + I ) ] ,  
g m = l  

with periodic boundary conditions OM+l = 01, for the case M = 2. In an angular 
representation J2 (m)  + - a’//aO’,, and if we change variables as follows, 

o+ = (0, + 0 2 ) / J 2 ,  0- = (01 - O , ) / J Z ,  (5.2) 

then the eigenvalue equation for a 2-site lattice reads 

a* a2 
- -+++2x cos ( J 2  e-))  U i { O }  = EIU((0). (as: ao- (5.3) 

This is Mathieu’s equation. It cannot be solved in terms of simple functions, and the 
only analytic results available are power series expansions for small x and asymptotic 
expansions for large x. We shall now derive the leading terms in these two limits. 

In  the strong-coupling limit, x + 0, the ground state and first excited state are simply 
eigenstates of the angular momentum operators: 

uo(0) = 1; w o = o  ( 5 . 4 a )  

U l { O }  = (cos 01 +cos 02) = 2 cos (OJJZ) cos(O./JZ); (5.4b) w1= 1. 

The limit x + 00 (weak coupling) is more interesting. The ‘potential’ term, c(O-) = 
-2x cos(J2 0-), develops very deep wells, with periodic minima at the points 

- 
0- = J 2  r m ,  m integer. ( 5  3 

The eigenfunctions have appreciable amplitudes only in the neighbourhood of these 
minima; in fact, to a first approximation they are delta functions, and for small 0- we 
have 

UO, l{QI  = s(Q- 1, ( 5 . 6 ~ )  

and hence 

wo,1 .,-2x. (5.6b) 

To get a better approximation, one may consider ‘small vibrations’ near the well 
minima, approximating the wavefunction by a narrow Gaussian, so that the eigknvalues 
are found to be 

wo.1 - - 2 x + J % .  (5.7) 
x - m  

These are the first two terms in an asymptotic series in powers of 1/JX, which may be 
developed further by a more detailed analysis of the ‘local’ structure of the solutions 
near one of the well minima (e.g. Goldstein 1927). 

Besides this local structure, however, the solutions also have a ‘global’, periodic 
structure, which gives rise to exponentially small corrections to the eigenvalues. The 
ground state, for instance, has period J2 rr in 0-, like the potential term; while the first 
excited state has period 2 J 2  r in 0- (cf equation (5.4b)). This structure is illustrated in 
figure 8. 
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lo1 Ground state 

l b )  First excited state 

Figure 8. Structure of ( a )  the ground state and ( b )  the first excited state wavefunctions for 
the 2-site O(2) model. 

The corrections to the eigenvalues arise in making connections between the 
solutions in the neighbourhood of adjacent minima. They are ‘tunnelling’ phenomena, 
arising as the wavefunction tunnels through the potential barrier between two minima. 
The magnitude of these effects may be estimated via the WKB approximation: they are 
proportional to 

Now uo and u1  are identical as regards their local structure in 8-; they differ only in 
their global structure, as illustrated in figure 8, and in the fact that the ‘average’ angular 
momentum J:  is 0 for uo and 4 for u1 (see equation (5.4)). Hence we find that the mass 
gap is 

This may be checked against the known solutions of Mathieu’s equation (Goldstein 
1929). It agrees with our numerical results, figure 2. 

The basic features of the 2-site solution generalise quite easily to M sites. Again uo 
and u1 have the same local structure in the vicinity of a potential well; they differ only in 
their global structure and in their ‘average’ angular momentum J?,  which is 0 for uo and 
1/M for u l .  Hence the mass gap in the weak-coupling limit is 

w1 - W O  - (I/M) + O[exp (-const &)I. 
X” 

(5.10) 

The exponentially small correction term comes again from ‘tunnelling’ effects between 
one well minimum and its neighbour, i.e. from ‘global’ differences in the structure of uo 
and u l .  

We have thus shown analytically that in the limit x + 03 the mass gap scales exactly as 
1/M, behaviour characteristic of a critical point. If we neglected the exponential 
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‘tunnelling’ terms, this result would be true for all x, indicating a continuous line of 
critical behaviour and a massless phase, at all couplings. This conclusion, and the 
approximation from which it results, corresponds exactly to the spin wave approxima- 
tion in conventional statistical mechanics (see e.g. Wegner 1967, JosC et a1 1977). 

The ‘tunnelling’ terms signal the presence of ‘instantons’ in the theory (Belavin et a1 
1975, ’t Hooft 1976), which are the field theory analogues of the vortices considered by 
Kosterlitz and Thouless (1973) in statistical mechanics. According to the latter authors, 
they play a vital role in the phase structure of the theory. At low temperatures (large x) 
they are energetically disfavoured, and occur only in bound pairs of vortex and 
anti-vortex; this is the massless phase. At higher temperatures, however, their entropy 
of formation begins to have more effect, until eventually a phase transition occurs, and 
the vortices become unbound. Our numerical analysis bears out this picture. 

For the O(3) model a similar analysis gives to leading order 

for a lattice of M sites. We have not carried the analysis beyond leading order. 
Topological instantons do not exist for O ( N ) ,  N 3 3;  but Belavin and Polyakov (1975) 
did discover pseudo-particle solutions of a different type for the O(3) case, and argued 
that they would destroy the massless phase at all couplings except x = 00 (see also 
Trimper 1979). Whether this is the correct explanation is not clear, since the O(4) and 
higher models are expected to behave similarly to 0 (3 ) ,  yet they have no instanton 
solutions. In any case, our numerical finite-lattice solutions do provide (weak) support 
for the absence of a phase transition at finite x. 

6 .  Summary 

In this paper we have extended our finite-lattice approach to Hamiltonian field theories 
to consider the behaviour of the O(2) and O(3) Heisenberg models in (1 + 1) dimen- 
sions. Two methods of efficiently determining the low-lying eigenvalues of such 
Hamiltonians were described. 

Finite-size scaling was used to formulate a remarkably sensitive test for a phase 
transition in the infinite system. The test involves the scaled mass gap ratio 

R (x, M )  = MF (x, m ) / ( M  - l)F (x, M - l), (6.1) 

where M is the lattice size. According to finite-size scaling 

at any point xc for which the infinite system is scale-invariant, i.e. at which the 
correlation length of the infinite system diverges. 

In practice, we have found that R (x, M )  satisfies (6.2) even for very small lattices, 
M b 3. For the Ising model (Hamer and Barber 1980,1981), R (x, M )  dropped linearly 
through unity at x = xc = 1, indicating an isolated scale-invariant point. In the present 
work, plots of R (x, M )  for the O(2) model (3 G M s 6) approached unity and then 
stayed there for x >x,= 1.8. We interpret this as strong evidence for the expected 
scale-invariant region at weak coupling (low temperatures). Finally, for the O(3) 
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model, R (x, M )  stays above unity for all finite x, leading us to conclude (albeit on the 
basis of a single curve, M = 3) that no phase transition occurs?. 

We have also studied the weak-coupling limit of the O(2) model algebraically, and 
shown analytically that the mass gap scales like 1/M in the limit. Exponentially small 
correction terms were also found, corresponding to tunnelling phenomena or ‘instan- 
tons’. These are the field theory analogues of the vortices discussed by Kosterlitz and 
Thouless (1973), which control the phase structure of the model. Thus all the essential 
physical features of the system (except, of course, the phase transition itself, which is a 
bulk phenomenon) are already present on the 2-site lattice. Even the smallest 
finite-lattice system provides a fascinating microcosm of the field theory. 

The results reported here, together with those of I for the (1 + 1)-dimensional Ising 
Hamiltonian, and similar calculations by Roomany et a1 (1980) for Z ( 2 )  and Z(3) 
systems, suggest that finite-lattice methods are a viable procedure for investigating the 
phase structure of Hamiltonian field theories. Unlike perturbation expansions (Hamer 
et a1 1979), they are capable of probing the whole of the phase diagram. Whether such 
methods can be brought to bear on more complex Hamiltonians, such as lattice gauge 
theories defined on higher-dimensional lattices, depends on the solution of some major 
computer problems. These are certainly difficult, but hopefully not insurmountable. 
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